自我监督学习的快速发展降低了从大量未标记的数据中的条形学习特征表示形式,并触发了一系列有关遥感图像的变更检测的研究。从自然图像分类到遥感图像的自我监督学习的挑战是从两个任务之间的差异引起的。对于像素级的精确更改检测,学习的补丁级特征表示不满意。在本文中,我们提出了一种新颖的像素级自我观察的高光谱空间传播理解网络(HyperNet),以完成像素的特征表示,以有效地进行高光谱变化检测。具体而言,不是斑块,而是整个图像被馈入网络,并且通过像素比较多个颞空间光谱特征。提出了一个强大的空间光谱注意模块,而不是处理二维成像空间和光谱响应维度,而是提出了一个强大的空间光谱注意模块,以探索分别分别的多个颞高光谱图像(HSIS)的空间相关性和判别光谱特征。仅创建并被迫对齐双期HSI的同一位置的正样品,旨在学习光谱差异不变的特征。此外,提出了一种新的相似性损失函数,以解决不平衡的简单和硬阳性样品比较的问题,其中这些硬样品的重量被扩大并突出显示以促进网络训练。已经采用了六个高光谱数据集来测试拟议的HyperNET的有效性和概括。广泛的实验表明,在下游高光谱变化检测任务上,HyperNET优于最先进的算法。
translated by 谷歌翻译
特征在于巨大的光谱信息,高光谱图像能够检测微妙的变化,并区分各种变化等级以进行变化检测。然而,最近由高光谱二进制变更检测的研究工作不能提供精细的变化课程信息。并且大多数包含用于高光谱多字母变化检测(HMCD)的光谱解密的方法,但忽略了时间相关性和误差累积。在这项研究中,我们提出了一种无监督的二进制变化,用于HMCD的无监督二进制变更导向的高光谱多种子变化检测网络(BCG-Net),其旨在通过成熟二进制改变检测方法提升多种子变化检测结果和解密结果。在BCG-Net中,专为多时间谱解密而设计了一种新型的部分暹罗联合式解密模块,并且开发了由二元变化检测结果的伪标签指导的突破性的时间相关约束,从透视中引导未混合过程变化检测,鼓励不变的像素的丰富更接合,并且改变像素更准确。此外,提出了一种创新的二进制变更检测规则来处理传统规则易受数值的问题。提出了频谱解压过程的迭代优化和变化检测过程,以消除来自解密结果的累积误差和偏置以改变检测结果。实验结果表明,我们所提出的BCG-Net可以在最先进的方法中实现多种多数变化检测的比较甚至出色的性能,并同时获得更好的光谱解密结果。
translated by 谷歌翻译
在实际应用中,识别网络的性能通常在应用于超分辨率图像时减少。在本文中,我们提出了一种基于特征的识别网络与GaN(FGAN)相结合。我们的网络通过提取从SR图像中识别的更多功能来提高识别准确性。在实验中,我们使用三种不同的超分辨率算法构建三个数据集,我们的网络将识别精度增加超过6%,与Reanet50和DenSenet121相比比较。
translated by 谷歌翻译
对发展有说服力的文本的兴趣日益兴趣促进了自动化系统中的应用,例如辩论和论文评分系统;但是,从争论的角度来看,先前的工作挖掘图像说服力几乎没有。为了将说服力开采扩展到多模式领域,我们提出了一个多模式数据集,ImageArg,由推文中图像说服力的注释组成。注释是基于我们开发的说服分类法来探索图像功能和说服力的手段。我们使用广泛使用的多模式学习方法在Imakearg上基于图像说服力。实验结果表明,我们的数据集为这个丰富而充满挑战的主题提供了有用的资源,并且有足够的空间来建模改进。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译